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A model of gas cooling and condensation in a piston expansion machine has been developed with allowance
made for formation of nuclei of the liquid phase and growth of droplets as well as for real thermophysical
properties. Internal heat release related to phase transition is taken into account in the adiabatic equation.
The processes of cooling and liquefaction of methane in the piston expander are calculated for specific con-
ditions.

A method using pre-cooling with expansion in the gas-expansion machine (or machines) and cooling due to
the Joule–Thomson effect with pressure drop in the throttle is widely used for gas liquefaction [1, 2]. In the present
work, we suggest a mathematical model of gas cooling and liquefaction in the piston expansion machine. Kuznetsov
and Gorbenko [3] calculated cooling of air, helium, and methane with account for real physical properties and esti-
mated the effect of friction and heat fluxes through the walls of the cylinder of the gas-expansion machine. In [3],
such initial parameters are taken at which gas supersaturation is not reached and condensation is absent. In principle,
partial condensation (liquefaction) is possible in gas-expansion machines. In the developed computational model, super-
saturation in the gas-expansion machine is monitored and if it reaches a critical value, then condensation and corre-
sponding heat release are taken into account. Usually it is assumed that in gas-expansion machines condensation is
intolerable due to possible hydraulic shocks (this danger is impossible in small liquefaction) and difficulties with lubri-
cation. Modern technologies allow solution of this problem.

In order to construct the computational model we adopted the following assumptions: the cylinder of the gas-
expansion machine is adiabatically insulated and the process of gas expansion in it is isentropic until limiting super-
saturation is reached; pressure and temperature are equalized in the expanded volume, friction and heat fluxes from the
outside are absent. We use a zone method, i.e., the entire process of gas expansion in the gas-expansion machine (cur-
rent time) is divided into time intervals (steps) ∆τi, to which space zones behind the piston moving in the cylinder
will correspond. One time step is equal to ∆τi = τ2i − τ1i and the increment of the zone volume is ∆Vi = V2i − V1i.
The medium parameters at the beginning of each step correspond to the parameters at the end of the previous step.
Since, under the expansion conditions in the gas-expansion machine, the gas differs in its thermodynamic and thermal
properties from an ideal gas, the adiabatic index k = Cp

 ⁄ CV depends on temperature and pressure. It was assumed that
the general adiabatic equation retains its form within narrow limits of temperature and pressure variation with substi-
tution of the adiabatic index by a value of keff that is effective in these conditions and that corresponds to the prop-
erties of the real gas. Thus, for the indicated narrow sections the equation for the adiabat takes on the form

T2i
 ⁄ T1i = (p2i

 ⁄ p1i)
Aeff , (1)
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where Aeff(T, p) = (keff − 1)/keff provided that (T1i − T2i)/T1i << 1 and (p1i − p2i)/p1i << 1. Aeff values can be related to
the inlet temperature T1i and pressure p1i or, for example, to section-mean values of T and p. The values of Aeff(T, p)
for methane on the adiabats are determined from the equation of state [4] and the relationship

Aeff = ln (T2i
 ⁄ T1i) ⁄ ln (p2i

 ⁄ p1i) . (2)

The values of Aeff obtained for methane at p ⁄ ps values from 0.8 to 1 change within the limits 0.285–0.275 as the en-
tropy increases from 3.6 to 4.4 kJ/(kg⋅K), i.e., within the considered operating range of methane entropy values. Vari-
ation of Aeff on the adiabats within the indicated range of p ⁄ ps does not exceed 0.03 on the average. For
supersaturated vapor, in calculation of adiabats in the T and p parameters we take approximately that Aeff values re-
main the same as they were in crossing of the boundary curve by this adiabat.

The intensity of nucleation of the liquid phase in supersaturated vapor was calculated by the known Frenkel’
formula [5], which gives, as was shown in [6], better correspondence to experimental data for water vapor than other
available formulas. As critical vapor supersaturation Ssup,cr we took such supersaturation Ssup at which the nucleation
rate I = 1 cm−3⋅sec−1 is reached. As Ssup increases further, the value of I increases sharply (Fig. 1). In calculation of
I the thermophysical properties of methane were used [4, 7, 8].

Pressure (elasticity) of saturated vapor above the surface of a spherical nucleus (droplet) is determined by the
Kelvin formula

psδ (Td, δ) = ps,f (Td) exp 




4σµ
RTdρliqδ




 . (3)

Hence, at Ssup = psδ ⁄ ps,f we find the nucleus diameter

δ = δn = 
1

ln Ssup
 

4σµ
RTρliq

 . (4)

The critical diameter of a nucleus δn,cr corresponds to critical supersaturation Ssup,cr.  At  T = 140 K and I = 1
cm−3⋅sec−1, Ssup,cr = 1.263 and δn,cr = 43.8⋅10−8 cm = 43.8 A° . For larger droplets the ratio psδ ⁄ ps,f is smaller. For
methane droplets with a diameter δ = 5⋅10−6 cm the considered ratio is of about 1.02; therefore, for these and larger
droplets an increase in vapor elasticity due to surface curvature can be neglected.

Large droplets have a higher temperature. As the droplet diameter decreases, its temperature decreases and dif-
fers slightly (by tenths of a degree) from the surrounding temperature. The nucleus temperature was taken to be equal
to the temperature of vapor. The values of δn for methane, depending on supersaturation at temperature 140 K, are as
follows:

Fig. 1. Dependence of the nucleation rate I on the value of methane vapor su-
persaturation Ssup at different temperatures (calculation by the Frenkel’ for-
mula): 1, 2, 3, 4, and 5) 150, 140, 130, 120, and 110 K, respectively.
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The diameter of large droplets is large compared with the mean-free path of vapor molecules. At the initial
stage of growth of droplets, their diameters are smaller than the mean-free path.

By supersaturation above large droplets (over a flat surface) we understand the ratio of vapor pressure p∞ to
saturated vapor pressure at temperature T∞, i.e., Ssup = p∞ ⁄ ps∞. Near the surface of a large droplet the pressure is
equal to the pressure of saturated vapor at temperature Td > T∞. For small droplets Td C T∞, pd C p∞ (due to the sur-
face-curvature effect). As the process develops, vapor supersaturation changes with temperature, pressure, nucleation
rate, and growth of droplets.

We dwell on direct account for the effect of the mean-free path l
_
 to the droplet radius, i.e., the Knudsen num-

ber Kn = l
_
/(δ/2), on the process under consideration. We estimate the mean-free path of the methane molecules as fol-

lows:

l
_
 = 

1

√2  πdm
2

n
 = 

kBT

√2  πdm
2

p
 . (5)

To find dm we use the rounded-off value of the parameter σ (σ = 3.8 A° ) of the Lennard-Jones potential for methane
given in [9]. The minimum energy in the Lennard-Jones potential measures up to the distance 

6
√2 σ = 1.12σ, which we

take as the molecule diameter. Thus, for methane dm = 1.12σ = 4.3⋅10−10 m in the then-used model where molecules
are considered as solid spheres. The calculated values of l

_
 for supersaturated methane vapor at several temperatures and

pressures are listed in Table 1 (calculation by the same technique for nitrogen under normal conditions gives
l
_
 C 5⋅10−8 m). This table also gives the Knudsen number values.

We estimate the distance between nuclei for specific conditions of the methane-operating gas-expansion ma-
chine [3]. The technical parameters of the gas-expansion machine (for which calculations were performed) are: cylinder
diameter 42 mm, stroke 66 mm, frequency of shaft rotation 980 rpm, coefficient of excess clearance 0.25, and mass
flow rate of methane 32.2 kg/h (at the initial parameters 300 K and 4 MPa). For this gas-expansion machine the time
of one shaft revolution is 6.12⋅10−2 sec and the mean time in which the piston passes a distance of 1 cm is τ

_
 =

4.64⋅10−3 sec. The number of nuclei formed in a volume of 1 cm3 during this time is n = Iτ
_
 cm−3 and the mean dis-

tance between nuclei is L
__

 = 1/n1 ⁄ 3 cm. Figure 2 shows the dependences of the mean distance between nuclei L
__

 and
the ratio l

_
 ⁄ L
__

 on the nucleation rate; in the calculations we took that l
_
 = 10−6 cm in all cases. It is seen from Fig. 2

that at I ≤ 1015 cm−3⋅sec−1 the ratio l
_
 ⁄ L
__

 does not exceed 0.02 and at I equal to 1019 cm−3⋅sec−1 or higher, l
_
 ⁄ L
__

 has an
order of unity. The estimates showed that for specific conditions of the problem being solved the value of I does not
exceed 105–1010 cm−3⋅sec−1, i.e., values of l

_
 ⁄ L
__

 are not high. Higher values of I are given in the figure only to illus-
trate its effect on the ratio l

_
 ⁄ L
__

.

TABLE 1. Mean-Free Path of Methane Molecules and Knudsen Number at Different Parameters of State and Diameters of
Droplets

T, K p, Pa ps, Pa l
_
, m

Kn
1 2 3

115 2.2⋅105 1.32⋅105 8.8⋅10−9 0.035 0.35 3.5

120 3⋅105 1.91⋅105 6.7⋅10−9 0.027 0.27 2.7

126 5⋅105 2.87⋅105 4.2⋅10−9 0.017 0.17 1.7

128 6⋅105 3.25⋅105 3.6⋅10−9 0.014 0.14 1.4

138 8⋅105 5.77⋅105 2.9⋅10−9 0.012 0.12 1.2

Note. 1, 2, and 3 at δ = 5⋅10−7, 5⋅10−8, and 5⋅10−9 m, respectively.
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Let the mean distance between the growing droplets in vapor be much larger than l
_
. Vapor at a distance from

the droplet surface, which exceeds l
_
 by an order, can be considered as continuum. The formula for heat transfer in

continuum (at distances from the droplet exceeding l
_
) has the form

rGv = πδ2α (Tb − T∞) , (6)

We consider that temperature Tb at a distance from the droplet surface, which is of the same order as the mean-free
path of vapor molecules, is approximately equal to the temperature of the droplet liquid phase Td. To allow for the
effect of the Knudsen number, following the concepts used in [6] and taking that Nu = 2, we rewrite formula (6) in
the form

rGv = πδ2 (2λv
 ⁄ δ) (Td − T∞) ⁄ γ , (7)

where, according to the Sherman formula [6],

γ = 1 + b Kn β−1
 . (8)

Here b is the dimensionless constant and β C 1 is the coefficient of thermal accommodation (in our case for methane
molecules).

For monatomic gases it is suggested to take b = 3.75 and for two-atomic b = 3.17. For pentatomic gas —
methane — the value of b must be lower. In what follows, we approximately take for methane b = 3. Since Gv =
πδ2gv, for further calculation of quasi-stationary droplet growth we can use the differential equation of material bal-
ance of a growing droplet in the following form:

ρliqd (πδ3 ⁄ 6) dτ = πδ2
gv . (9)

From Eqs. (7)–(9) we have

dδ2

dτ
 = (1 + b ⁄ δ)

−1⋅4⋅
2λv

rρliq
 (Td − T∞) = (1 + b ⁄ δ)

−1⋅4Q ⁄ ρliq , (10)

where Q = gvδ = 2λv(Td − T∞)/r; we can take Q = const with variation of the droplet diameter [10] (in the case of
constant pressure and temperature of vapor). After integration of (10) and transformations the equation for the droplet
diameter takes on the form

δ = − 4bl
_
 + √(4bl

_
)2 + (4Qτ ⁄ ρliq) + δ0

2 + 4bl
_
δ0  . (11)

Fig. 2. Dependence of L
__

 (m) and the ratio l
_
 ⁄ L
__

 on the nucleation rate.
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An equation of type (11) with addition terms that are of no importance in condensation of pure methane
vapor (or a mixture of methane with a small amount of nitrogen) was obtained in [11] for condensation of a small
admixture of mercury vapor mixed with nitrogen. In the latter case, an important role is played by diffusion resistance
to delivery of mercury vapor to the droplet surface. Formula (11) holds for calculation of the diameter of both large
and small droplets.

It follows from expression (11) that at elevated values of the Knudsen number (small δ) the droplet diameter
increases linearly with time, whereas at low values of this number the square of the droplet diameter increases linearly
[10, 12]. Figure 3 presents the dependence of the time of methane droplet growth on the relative diameter δ ⁄ δ0, which
is calculated by formula (11) at l

_
 = 2.9⋅10−9 m. The results show that small droplets grow very quickly compared with

larger droplets. The time in which a droplet reaches a size of 3⋅10−7 m (δ ⁄ δ0 = 100) is only 1.8⋅10−5 sec, whereas
the time of droplet growth to 3⋅10−6 and 1.2⋅10−5 m is 1.2⋅10−3 and 2.2⋅10−2 sec, respectively.

Thermal coagulation of nuclei and droplets that is determined by Brownian motion can occur [6, 12]. How-
ever, the estimates showed that coagulation of nuclei under the conditions of the gas-expansion machine is expressed
weakly (in contrast to coagulation of droplets in turbulent and reversible flows and in thermal coagulation during rela-
tively large time intervals). We also note that vapor condensation can occur not only on spontaneously arising nuclei
(homogeneous nucleation) but also on extraneous sites of condensation — dust particles and other foreign small parti-
cles (heterogeneous nucleation) [6]. In the case of gas liquefaction, these may be particles of earlier condensed impu-
rity gases — hydrocarbons, CO2, etc. But the number of extraneous sites is usually insufficient to reach in
condensation on them of the required completeness of gas liquefaction. The suggested calculation of gas cooling and
condensation can also be used in the case of a sufficient number of these sites (in a simplified form without calcula-
tions corresponding to nucleation processes).

We consider special features of condensation on small droplets related to the effect of curvature on saturated
vapor pressure. Growth of these droplets will be somewhat retarded due to a decrease in the droplet surface tempera-
ture and decrease in heat removal caused by it. However, as has already been mentioned, the effect of surface curva-
ture on vapor elasticity for methane droplets can be neglected with an error of 1.02, i.e., already for droplets with a
diameter of 5⋅10−8 m (at vapor pressure 0.8 MPa). Thus, as a whole, the error in determination of the time of droplet
growth in Fig. 3 is not large.

We should bear in mind that the appearing nuclei have, in principle, different diameters — from small to
larger than δn,cr. Condensation cannot take place on nuclei with diameters smaller than δn,cr, since in this case, free
energy of the droplet–vapor system would increase. Only at nuclei diameters δn ≥ δn,cr can condensation with decreas-
ing free energy occur. However, the number of nuclei whose diameter exceeds δn,cr is relatively small. Dispersion does
not exceed several percent [13]. Therefore, it was assumed that, under these conditions, all nuclei have the same di-
ameter δn,cr and just on them condensation will take place and further growth of droplets will occur.

Fig. 3. Dependence of the time of condensation growth of a methane droplet
on the relative diameter δ ⁄ δ0 at p = 8⋅105 Pa, T = 138 K, l

_
 = 2.9⋅10−9 m, Q

= 5⋅10−7 kg/(m⋅sec), and δ0 = 3⋅10−9 m.
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On appearance of condensation the flow in the gas-expansion machine becomes nonisentropic (entropy will in-
crease), but in the presence of thermal insulation it becomes adiabatic. In the adiabat equation (1), heat release in
phase transition is disregarded (friction heat is neglected). We take into account condensation internal heat release for
an adiabatically insulated system, having included into the adiabat equation the corresponding dqin > 0

dqin = di − vdp . (12)

Then, in calculation by the zone method the heat release in nucleation is ∆Nni 
ρliqπδni

3

6
 ridv, J/kmole, where ∆Nni =

Ii∆τi is the increment of the number of nuclei that appeared in the zone in time ∆τi, per cubic meter; 
ρliqπδni

3

6
 ri is the

heat release per nucleus, J. On nuclei formed in each zone droplets grow, which increase in diameter in subsequent
zones. The number of droplets of one size or another in the zone is determined by the number of nuclei from which
this generation of droplets flows. The diameter, temperature with account for the surface curvature, and mass and its
increment are calculated for each generation of droplets. Heat liberated by the droplets of the generation, which grew
on the considered time step, is calculated as the product of the number of these droplets per volume unit by the in-
crement of their mass and specific heat of condensation at the temperature of the droplet surface. The account of heat
liberated in formation of all droplets is determined by summation of the amount of heat over all generations of the
droplets of the zone (step).

Thus, if, in addition to nuclei, droplets grow, heat release related to condensation growth of droplets is added
to the heat of nucleation. We denote dqin = Bdv, where B is the condensation heat release per gas volume unit, which
coincides in dimensions with pressure. The initial equation for the section has the form

Bdv = di − vdp = CpdT − vdp .

After transformations we obtain a differential equation that models adiabatic gas expansion in the presence of conden-
sation:

dT

T
 = Aeffdp 

p − B

p
2
 − AeffBp

 . (13)

Integrating (13), we obtain a solution that relates the parameters of state (provided that B = const, as will be assumed
in calculation):

T2 = T1 




p2 − AeffB

p1 − AeffB





(Aeff−1)

 
p2

p1
 . (14)

In the p–V coordinates this solution has the form

p2 − AeffB

p1 − AeffB
 = 




V1
V2





1
1−Aeff

 = 




V1
V2





keff

 . (15)

At B = 0, an ordinary expression for adiabat (1) follows from (13) and (14). When B > 0, first, as pressure decreases,
temperature still decreases, then, on reaching the minimum point (at B = p) the temperature decrease is superseded by
its increase if the value of B is preserved.

Using Eqs. (14) and (15), we can not only calculate the parameters of the medium in the gas-expansion ma-
chine in the presence of condensation heat release but also take into account the effect of friction and heat fluxes from
the outside in such devices, having included the quantity B into the correction that corresponds to these factors.
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We made zone calculation of cooling and liquefaction of methane in the gas-expansion machine the technical
parameters of which are given above. The increase in the cylinder volume at each step that is caused by piston motion
is V2i = V1i + χi∆τi, where according to the main kinematic relations for the piston expansion machine [14]

χi = 
Vcπ
Tfl

 



sin (2πτi

 ⁄ Tfl) + 
ε
2

 sin (4πτi
 ⁄ Tfl)




 .

Calculation of methane cooling in the gas-expansion machine without supersaturation and, thus, without con-
densation, which was made at the initial parameters 300 K and 4 MPa, showed that the temperature that corresponds
to the end of adiabatic expansion of methane is 215 K, which agrees with the result obtained in [3].

The main calculations are made in the gas-expansion machine for the cases of expansion with partial conden-
sation of methane. Table 2 gives the corresponding initial parameters of state and values of the outlet parameters (at
the end of expansion): temperature, pressure, entropy, values of supersaturation, and the liquefaction coefficient Kliqf
for four versions. The liquefaction coefficient Kliqf is determined as the ratio of the formed mass of liquid methane to
the mass of gas loaded to the gas-expansion machine. The versions are specified by the values of entropy at the inlet
to the gas-expansion machine. Initial parameters of the computation versions are, correspondingly, chosen such that
methane in the gas-expansion machine could reach the supersaturated vapor state. The time interval that corresponds to
one step is taken as ∆τi = 1⋅10−6 sec; in this case, temperature variation at one step was not more than 0.001 K. A
decrease in this interval, starting from 1⋅10−5 sec, did not lead to noticeable changes in the computation results.

In all cases, the heat of nucleation per volume unit does not exceed 0.02 Pa, i.e., it is small compared with
heat release due to droplet growth. Once the volumetric condensation heat release B exceeds the current pressure, a
decrease in temperature, as has already been mentioned, gives way to its increase until the excess is maintained. These
processes are illustrated in Fig. 4 for the second version of calculation. For the first and third versions similar graphs
were obtained. Once the value of B becomes smaller than the current pressure, the medium temperature again begins
to decrease (Fig. 4). From the moment the medium temperature begins to increase, the difference between the droplet

TABLE 2. Versions of Calculation

Version
No.

Parameters at the inlet to the gas-expansion
machine Parameters at the outlet from the gas-expansion machine

S, kJ/(kg⋅K) T, K p, MPa Ssup S, kJ/(kg⋅K) T, K p, MPa Ssup Kliqf

1 3.60 171.7 2.19 0.885 3.97 141 0.68 1.001 0.06
2 3.70 172.3 2.00 0.792 4.01 139 0.61 1.002 0.05
3 3.80 171.3 1.75 0.715 4.05 136 0.52 1.02 0.04
4 3.90 171.5 1.55 0.629 3.90 120 0.41 2.09 0.001

Fig. 4. Variation of temperature, methane pressure, and value of condensation
heat release in volume unit B as a function of time of piston motion for the
second version of calculation given in Table 2: 1) B, MJ/m3 (MPa); 2) p,
MPa; 3) T, K.

936



and medium temperatures Td − T∞, the corresponding heat removal from droplets, the growth of their size, and conden-
sation heat release decrease. Calculations showed that the difference Td − T∞ continues to decrease almost until the
time instant that corresponds to the end of gas expansion.

At the initial parameters adopted for the fourth version, the process of isentropic gas cooling (until the origi-
nation of supersaturation) occupies a larger time interval than in other versions. Nucleation begins later (Fig. 5), the
liquefaction process does not succeed in developing, and high supersaturation is maintained at the outlet. In the first
three versions, droplets with different diameters appear in the gas-expansion machine earlier and their quantity is much
larger than in the fourth version. In the last version, a noticeable number of droplets is fixed only to the time instant
close to the end of piston motion toward gas expansion.

For the versions considered, the diameters of droplets at the end of gas expansion do not exceed several mi-
crometers (in the first versions they are larger). The number of droplets per cubic meter decreases sharply with devia-
tion of diameter values from a step-mean value.

Thus, at close temperatures of methane at the inlet to the gas-expansion machine, the liquefaction coefficient
is the higher the lower the initial value of entropy. Results of the calculation illustrate the processes occurring in the
piston expansion machine in the presence of the partially liquefied gas and allow a comparative analysis of different
versions. This approach can be used in solution of specific engineering problems of cooling and liquefaction of other
gases, e.g., helium and hydrogen, and gas mixtures, e.g., natural gas (which contains nitrogen as a basic noncon-
densing impurity).

An analysis of the processes of gas cooling and liquefaction with decrease in pressure and temperature at the
outlet from the gas-expansion machine, in the heat exchanger, and then in the Joule–Thomson throttle (the final ele-
ment in the liquefaction installation) is also of interest.

This work was carried out with support from the Belorusian Republic Foundation for Basic Research (project
No. T03-017).

NOTATION

A = (k − 1)/k; b, the dimensionless constant in the Sherman formula; B, condensation heat release per volume
unit, J/m3 (Pa); Cp and CV, heat capacities at constant pressure and volume, respectively, J/(kg⋅deg); dm, molecule di-
ameter, m; Gv, vapor flow to the droplet surface, kg/sec; gv, vapor-flow density near the droplet surface, kg/(m2⋅sec);
i, mole enthalpy, J/kmole; I, nucleation rate, cm−3⋅sec−1; k, adiabatic index of the ideal gas; kB = 1.38⋅10−23,
Boltzmann constant, J/K; Kn = l

_
/(δ/2), Knudsen number; kliqf, degree of gas liquefaction; l

_
, mean free path of a mole-

cule, m; L
__

, mean distance between nuclei, m; n = p/(kBT), number of vapor molecules per volume unit, m−3; Nu =
αδ ⁄ λv, Nusselt number for a droplet; ∆Nni, increment of the number of nuclei per volume unit in time ∆τi, m−3; p,
pressure, MPa; qin, heat release in gas condensation, J/kmole; Q, parameter in calculation of the velocity of droplet
growth, kg/(m⋅sec); r, specific heat of phase transition, kJ/kg; R = 8.31⋅103, universal gas constant, J/(kmole⋅K); S, en-

Fig. 5. Variation of the increment of the number of nuclei in the gas-expansion
machine (per cubic meter) as a function of time of piston motion: 1, 2, 3, and
4 correspond to the versions of calculation given in Table 2.
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tropy, kJ/(kg⋅K); Ssup, supersaturation; T, temperature, K; Tfl, time of one revolution of the flywheel, sec; v, molar vol-
ume, m3/kmole; V, volume, m3; ∆Vi, variation of the zone volume corresponding to one step, m3; Vc, volume of the
cylinder of the gas-expansion machine, m3; α, heat-transfer coefficient, W/(m2⋅deg); β, coefficient of thermal accom-
modation; δ, diameter (of a nucleus or droplet), m; ε, ratio of the crank radius to the length of the connecting rod;
χi, velocity of gas volume growth behind the moving piston at time instant τi, m3/sec; λv, thermal conductivity of
vapor, W/(m⋅K); µ, molecular mass, kg/kmole; ρ, density, kg/m3; σ, surface tension, N/m; τ, time, sec; ∆τi, time of
one step, sec. Indices: 0, initial value; 1 and 2, inlet to and outlet from the zone; ∞, at a large distance from the drop-
let; in, internal; b, on the boundary that is at a distance from the surface droplet of an order of the mean-free path of
vapor molecules; liq, liquid; n, nucleus; d, droplet; cr, critical value; m, molecule; fl, flywheel; v, vapor; f, flat surface;
c, cylinder; eff, effective value corresponding to real gas; i, number of a step; s, saturation state; sup, supersaturation
state; δ, curve surface corresponding to the diameter δ; overbar, mean value of the quantity; liqf, liquefaction.
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